
Description Introduction

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 1

BAE0911 AE BASIC language reference
Automation Engine Basic compiler

Microcontroller based 1-wire slave for flexible solutions.

 Description

 Introduction

The BAE0911 implement a four process automation engine interpreter.
This allows to create automatic (re)actions directly within the chip without requiring host (Linux) polling.
This is implemented as a virtual CPU that process up to four flow of instruction in parallel.
The AE programs are stored in non volatile chip memory (flash) which is remotely programmable under master
control.

 How AE is working?

The BAE chips implement their functionalities by exposing registers to 1-wire master. Controlling operation on the
device is a matter of reading/writing to the appropriate register.

The device registers are a key aspect of the BAE chips. There are registers that control I/O but registers also
controls the internal AE process. This is simply done by having visibility of registers in both AE process and OWFS
master.
Embedded automation require read-write operations to device registers plus some flow control instructions:
The instruction possible with AE are:

¶ Register affectations

¶ Timing operations

¶ Arithmetic operations

¶ Compare operations

¶ Stack operations

¶ Sub routine branch-return

¶ Conditional flow

¶ Parallel task control

¶ Flow i/o functions (introduced on 0911 model)

 Utilization

The perspectives allowed by a programmable device are numerous and not restricted to the examples proposed
here:

¶ Thermostat – control against user defined set points

¶ Motor speed control with closed loop feedback

¶ Push button momentary switch with timed relay output

¶ Programmed sequential cycles with servo and end of course detection

¶ Liquid flow measurement with alarm on volume/duration/flow

¶ Night/day current consumption counter

¶ twilight switch

¶ Aquarium monitoring – temperature, pumps, lights, food…

¶ Intrusion detection with embedded conditions to trigger alarms, tamper detection,…

¶ Status reporting with different blink patterns, tone or melody

¶ Front door bell with Morse code sesame.

¶ …

http://www.brain4home.eu/

Description Features

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 2

 Features

¶ Flash storage for AE programs

¶ Four independent processes

¶ Semi-interpreted byte code –

¶ open source Compiler provided

¶ Execution speed: up to 10K instructions per second

¶ Full R/W access to BAE registers

¶ Arithmetic operations on 8, 16, 32 bit registers

¶ autoexec feature at chip power on

¶ Simplified direct control from 1-wire master

¶ Stability enforced by running each processes with own distinct context.

AE related features BAE0910 BAE0911

Storage size for AE programs (number of pages)
A page is a flash memory bloc of 512 bytes

2 8

Number of process 4 4

Global memory (shared RAM) 0 64 bytes

Stack space (per process) 32bytes x 4 process 96bytes x 4 process

User registers accessible from owfs 32 bytes :
8bit registers: 8
16bit registers: 4
32bit registers: 4

256 bytes:
8bit registers: 32
16bit registers: 32
32bit registers: 16
Byte array: 32

AE basic support No, only subset of
AE ASM

Yes

Other AE features -divide instruction
-flow i/o instructions
-arrays

 Performance (tobe updated)

AE is implemented as a virtual CPU that handles four contexts. The opcodes are fetched from the four instruction
flows and are executed in round robin sequence to allow a pseudo parallelism. Blocking instruction ‘WAIT’ put the
corresponding flow on hold giving more slices to active processes.
The emulated cpu has an average frequency of 50KHz. This may seems a quite low compared to GHz class today
cpu’s, but this is sufficient to reach millisecond level real-time processing. Moreover, time critical operations like
1-wire communication, pwm, counter inputs, adc, … are handled in background by the hardware. AE is only the
glue logic used to build state machine, or closed loop control.

On the performance perspective, instructions could be divided in 4 categories

¶ 1 cpu cycles: Flow control instructions, excluding 16bits CALL, RET, JMP

¶ 2 cpu cycles: 8 bits operations

¶ 3 cpu cycles: 16 bits operations, including CALL,RET,JMP

¶ 4 cpu cycles: 32 bits operations
When only one process is running, around 10K instr/s are processed,
For 2 concurrent processes, 7,5K instr/s each (total 15K instr/s)
For 3 concurrent processes, 5,8K instr/s each (total 17,5K instr/s)
For 4 concurrent processes, 4,7K instr/s each (total 19K instr/s)

http://www.brain4home.eu/

Description Table of Contents

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 3

 Table of Contents

Description... 1

Introduction ... 1
How AE is working? .. 1
Utilization... 1
Features ... 2
Performance (tobe updated).. 2
Table of Contents ... 3

The AE Compiler .. 5
introduction ... 5

ae_asm ... 5
download and build ae_asm .. 5
Compiling a program: .. 5

defining a SUB .. 6
Calling a SUB .. 6
The FOR / NEXT loop .. 6
The DO / WHILE loop ... 7
The BREAK and CONTINUE keyworkds ... 7
Variables and registers ... 8

Registers ... 8
Global variables .. 8
Local variables .. 9
Stack memory ... 9
Optimizations by manipulating stack and AE assembler opcodes .. 9

Automation Engine - AE ... 11
Language reserved words .. 11

Directives ... 11
#define... 11
#eeprom .. 11
#extern .. 11
#include ... 11
Comments // and ' ... 11

Structure of an AE program ... 12
AE BASIC reserved words ... 12
Assember opcodes ... 12

Instruction set and related flags .. 13
How AE instructions are internally stored ... 14
AE stack .. 15

Subroutine ... 15
Parameter passing ... 15
Local variables .. 15
Arithmetic operations .. 15

AE addressing ... 16
AE branching .. 16

Absolute static branching: JMP .. 16
Absolute stack branching: SJMP... 16
Absolute indexed branching: IJMP ... 17
Relative branching: BRA, BEQ, BGR, BLO, … ... 17
Branching to subroutine CALL, RET .. 17

Controlling the processes .. 18
Autoexec of the process 0 on power on .. 18

http://www.brain4home.eu/

Description Table of Contents

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 4

Writing code for BAE devices ... 18
Building ae-asm commandline assembler .. 18
Defining eeprom page to use in source code ... 18
Defining location of the code in the page(s) .. 18
Register definitions in source code .. 19

Sample AE programs .. 20
Schematics & examples ... 21

Controlling servo motors ... 21
Recovering a failing chip .. 22

Question & Answer .. 22
Support .. 23
Availability ... 23
Condition of use ... 23
Terms of license ... 23
About the author ... 24

Credits .. 24
Revision history.. 24

http://www.brain4home.eu/

The AE Compiler introduction

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 5

The AE Compiler

 introduction

The BAE devices integrate a pseudo-assembly code interpreter. The first version of the compiler was indeed only
an assembler. A tool that translate mnemonics straight to opcodes.
The AE compiler is an evolution of that assembler that integrated more high level instructions. The instructions
added to the compiler are inspired from BASIC language. It is however still possible to write assembly mnemonics
in the program and have them generated as any other code.

 ae_asm

ae_asm is allin-one compiler-assembler-linker program written specifically for BAE0911 devices. The source is
downloadable on www.brain4home.com

 download and build ae_asm

wget http://www.brain4home.com/downloads/ae11.tgz

tar - xfz ae11.tgz

cd ae11

make

 Compiling a program:

General command line parameters are:
ae_asm [- h] [- r] [- x] [- v] [- c] - o outputfile - l outputfile.lst inputfile [inputfile]...

 - r output register list

 - x output hex code

 - o outfile output generated code in binary outfile

 - l produce an outputfile.lst

 - s output source

 - d output disassembly

 - c continue on error

 - v verbose

 - h display this help

Example
$ cd ae11 /sample

$../ae_asm helloworld.bas - o helloworld.bin - r
processing file helloworld.bas - pass 0,

pass 0 done

processing file helloworld.bas - pass 2,

pass 2 done

Symbol Table:

 lcd_write_data_byte BYTE @0x7b01 SEQUENTIAL I/O REGISTER (1 - Wire device control register)

 serial_read_byte BYTE @0x7b06 SEQUENTIAL I/O REGISTER (1 - Wire device control register)

 serial_write_byte BYTE @0x7b07 SEQUENTIAL I/O REGISTER (1 - Wire device control register)

 lcdc BYTE @0x7e01 LOW REGISTER (1 - Wire device control register)

 scic BYTE @0x7e0a LOW REGISTER (1 - Wire device control register)

 bauddiv WORD @0x7a13 BYTE MAPPED REGISTER (1 - Wire device control register)

 hello BYTE[13] @0x0065 CONSTANT (flash storage)

 bye BYTE[9] @0x0072 CONSTANT (flash storage)

 autoexec.reply BYTE @0x7dff LOCAL variable of autoexec() param_stack_size=0

 autoexec.close LABEL @0x005b (relative to entry point of sub)

 autoexec SUB @0x0000 autoexec() param_stack_siz e=0

 autoexec.do_a3aacf8 LABEL @0x0025 (relative to entry point of sub)

 autoexec.end_while_a3aacf8 LABEL @0x004b (relative to entry point of sub)

 autoexec.or_is_true_a3aacf8 LABEL @0x004b (relative to entry po int of sub)

generate program on file helloworld.bin

Code summary:

Code start at :0x0000

Code end at :0x007a

Size reserved :0x0200

Lines of code : 193 echo

Writing the program to de device:
$ echo 1 > /owfs_montpoint/FC.0000000004 03/eeprom/erase.0

$ cp helloworld.bin /owfs_montpoint/FC.0000000004 03/eeprom/page.0

$ echo 1 > /owfs_montpoint/FC.0000000004 03/910/pc0

http://www.brain4home.eu/
http://www.brain4home.com/

The AE Compiler defining a SUB

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 6

 defining a SUB

A SUB is a subroutine that can be called by the main program. In fact even the main program is as SUB.
A sub can receive parameters and declare local variables.
Example:
SUB blink (n AS BYTE) ' this sub blink the led on PIO1 n times

LOCAL i AS BYTE

FOR i=1 TO n

pio [i] =1 ' turn led on

WAIT 128 ' wait for 128/256 th of a second (0.5s)

pio [i] =0 ' turn led off

WAIT 128 ' wait f or 128/256 th of a second (0.5s)

NEXT i

END SUB

There is a special sub named autoexec that will be generated at position $0000 in flash memory with a signature
allowing automatic execution when the device is powered-on.
Example:
SUB autoexec() 'function named autoexec() is generated at position $0000 to

' allow auto execution at power - on

 lcdc=_LCD_FOUR_LINES 'configur e lcd interface

 WRCMD serial_write, 6, òBAE0911ò,0, usera 'send 6 bytes on lcd

END 'stop the program

END SUB

 Calling a SUB

The sub is called by the subname followed by argument between round brackets.
Example:
...

blink(5) 'call the sub to blink the led (5 times)

...

A sub that is declared but not used (not called) within the whole program will not be generated and will not
consume memory. This is useful when creating include files with commonly used subs.

 The FOR / NEXT loop

This is a structure for designing loops. Useful when traversing an array.
General form of a for loop is as follow:
FOR variable=startvalue TO endvalue

 instructions

 instructions

 [CONTINUE]

instructions

 [BREAK]

instructions

 ...

NEXT

The variable is assigned a starting value then the instruction bloc is executed multiple time with variable
incremented at each iteration (when reaching NEXT).
The loop is ended when variable become greater than endvalue.
If an optional CONTINUE instruction is encountered, the flow directly jump to NEXT statement and loop if
endvalue not exceeded.
If an optional BREAK instruction is encountered, the flow directly jump after the NEXT statement. This is used to
exit the loop early if some special conditions are needed.

http://www.brain4home.eu/

The AE Compiler The DO / WHILE loop

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 7

 The DO / WHILE loop

This is a also structure for designing loops. For example to wait for a specific condition is met.
 General form of a DO/WHILE loop is as follow:
DO

 instructions

 instructions

 [CONTINUE]

instructions

 [BREAK]

instructions

 ...

WHILE condition

The loop ins entered uncoditionnaly and will execute instruction until reaching WHILE statement
If the while contion is met, it loop again …The loop is ended when variable become greater than endvalue.

 The BREAK and CONTINUE keyworkds

If an optional CONTINUE instruction is encountered, the flow directly jump to NEXT statement and loop if
endvalue not exceeded.
If an optional BREAK instruction is encountered, the flow directly jump after the NEXT statement. This is used to
exit the loop early if some special conditions are needed.

http://www.brain4home.eu/

The AE Compiler Variables and registers

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 8

 Variables and registers

AE programs use various memory space to store data and control device. Registers, Global variables, Local
variables, Constants, and Stack.
Data types

¶ BYTE is a 8bit value that can represent a character, or a positive value from 0 to 255 (28-1)

¶ SHORT is a 8bit value that can represent a signed value from -128 to 127

¶ WORD is a 16bit value that can represent a positive value from 0 to 65535 (216-1)

¶ INT is a 16bit value that can represent a signed value from -32768 to 32767

¶ DWORD is a 32bit value that can represent a positive value from 0 to 4294967295 (232-1)

¶ LONG is a 32bit value that can represent a signed value from -2147483648 to 2147483647

Arrays: an array contains multiple data of same type.
Accessing an array element is done by specifying the indice between brackets in base zero.
Example:
REGISTER adc AS WORD[16]

adc is defined as an array of 16 words. The first element is accessed with adc[0], the last with adc[15]

 Registers

 The registers are the most common variable objects. They are defined in the bae0911.inc include file. Registers
refer to predefined functionalities of the device. They have various usage and various behavior:
Some registers passively hold information, like user_bytes , only AE programs and 1wire master may modify
their content. Useful to store data shared between subs and 1wire master.
Some other registers get updated automatically by the device like adc or pio that reflect input pin state.
Writing and reading on i/o can also by done by writing or reading registers like serial_write_byte and
serial_read_byte
The particularity of registers is that they are visible by all process, but also by the 1wire master.
The use of register in the program is standard affectation
Example:
serial_write_byte =ò>ò ' write the call the sub to blink the led (5 times)

pio[1]=1 ' t urn led on

See the device datasheet to the complete list of register and their function.

 Global variables

You may declare a variable outside a SUB with the keyword GLOBAL. This allow to create variables that are
globally visible (all subs from any process can access them)
The utilization of these variables are identical to other variable and registers.

When different programs compiled independently need to access a common global variable, it is needed to
declare the same variable in both sources with specifying the address of the variable in all other but first.

Example
GLOBAL last_action AS BYTE

When compiled, the above code define last_action at the address $7C00

If you create another program to store it in the same device at another page, to use the same variable, define this
variable as:
REGISTER last_action AS BYTE @ $7C00

http://www.brain4home.eu/

The AE Compiler Variables and registers

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 9

 Local variables

The scope a of local variable is constrained to a SUB, they are dynamically allocated and freed when sub is called
and exited.

 Stack memory

This is automatically allocated by operation when using AE basic. It can be explicitly manipulated with ASM
opcode when needed.
LOCAL , SUB params and arithmetic instructions make continuous use of the stack and special attention is
required to manipulated the stack directly to avoid interfering with an AE basic program.

 Optimizations by manipulating stack and AE assembler opcodes

Example: divide a value and get the remainder. a, b and r are of type BYTE.

With AE basic, to get the remainder of a division you
would first calculate the quotient then multiply the
result by the divisor and subtract from the numerator.

Here the equivalent operation directly written in AE
assembly:

AEbasic:
r=a - (a/b)*b ' calculate the remainder

AEassembler:
PUSH.B a ' prepare oprand in stack

PUSH.B b

DIV.B ' then divide

POP.B r ' and store remainder in r

AIS 1 ' remove result from stack

Resulting assembly:
0x0003 40 7d f2 PUSH.B a

0x0006 40 7d f2 PUSH.B a

0x0009 40 7d f1 PUSH.B b

0x000c 78 DIV.B (stack)

0x000d 31 01 AIS 1

0x000f 40 7d f1 PUSH.B b

0x0012 79 MUL.B (stack)

0x0013 71 SUB.B (stack)

0x0014 48 7d f3 POP.B r

Resulting assembly
0x0003 40 7d f2 PUSH.B a

0x0006 40 7d f1 PUSH.B b

0x0009 78 DIV.B (stack)

0x000a 48 7d f3 POP.B r

0x000d 31 01 AIS 1

ĄThe generated code is 20 bytes long. ĄThe generated code is 12 bytes long.

It could be even better if the result of the division could replace the original value:

AEbasic:
r=a ' store temporarily a

a=a/b ' divide

r=r - (a*b) ' calculate remainder

AEassembler:
DIV.B a,b ' divide in place (a=a/b)

POP.B r ' store remainder in r

Resulting assembly:
0x0003 50 13 7d f3 7d f2 . . MOV.B r a

0x0009 50 18 7d f2 7d f1 . . DIV.B a b

0x000f 31 01 AIS 1

0x0011 40 7d f3 PUSH.B r

0x0014 4 0 7d f2 PUSH.B a

0x0017 40 7d f1 PUSH.B b

0x001a 79 MUL.B (stack)

0x001b 71 SUB.B (stack)

0x001c 48 7d f3 POP.B r

Resulting assembly
0x0003 50 18 7d f2 7d f1 . . DIV.B a b

0x0009 48 7d f3 POP.B r

ĄThe generated code is 28 bytes long. ĄThe generated code is 9 bytes long.

http://www.brain4home.eu/

The AE Compiler Variables and registers

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 10

Other optimization examples

Led blink - not optimized
LOCAL i AS BYTE

FOR i=1 TO 10

pio[1]=1 ' tu rn led on

WAIT 128 ' wait for 0.5 s

pio[1]=0 ' turn led off

WAIT 128 ' wait for 0.5 s

NEXT

ĄThe generated code is 35 bytes long.

Resulting assembly:

0x0001 31 f f AIS - 1

0x0003 51 13 7d ff 01 . . . MOV.B i 1

0x0008 51 12 7d ff 0 a . . . CMP.B i 10

0x000d 2e 17 BGT +23

0x000f 51 13 79 01 01 . . . MOV.B pio[1] 1

0x0014 00 00 80 WAIT 128

0x0017 50 01 79 01 CLR.B pio[1]

0x001b 00 00 80 WAIT 128

0x001e 50 06 7d ff INC.B i

0x0022 20 e6 BRA - 26

Led blink - better code that do the same
LOCAL i AS BYTE

FOR i=0 TO 19 ' twice the cycles

pio[1]^=1 ' invert the bit

WAIT 128 ' wait for 0.5 s

NEXT

ĄThe generated code is 27 bytes long.

Resulting assembly

0x0001 31 f f AIS - 1

0x0003 50 01 7d ff CLR.B i

0x0007 51 12 7d ff 13 . . . CMP.B i 19

0x000c 2e 10 BGT +16

0x000e 51 17 79 01 01 . . . XOR.B pio[1] 1

0x0013 00 00 80 WAIT 128

0x0016 50 06 7d ff INC.B i

0x001a 20 ed BRA - 19

Led blink - Now a code with same behavior, but
completely written in assembly

LOCAL i AS BYTE

MOV.B i, 20

loop20:

 NOT.B pio[1]

 WAIT 128 ' w ait for 0.5 s

 DEC.B i

 BNZ loop20

ĄThe generated code is 20 bytes long.

Resulting assembly

0x0001 31 f f AIS - 1

0x0003 51 13 7d ff 14 . . . MOV.B i 20

0x0008 50 03 79 01 NOT.B pio[1]

0x000c 00 00 80 WAIT 128

0x000f 50 07 7d ff DEC.B i

0x0013 26 f5 BNE - 11

Led blink - even more compact by using stack instead
of explicit variable
PUSH.B 20 ' number iteration in stack

loop20:

 NOT.B pio[1] ' toggle led

 WAIT 128 ' wait for 0.5s
 DEC.B ' decrement byte in stack

 BNZ loop20 'loop until zero

 ' AIS 1 ' remove byte from stack

 ' could be omitted as RET

restore the stack automatica lly

ĄThe generated code is 12 bytes long.

Resulting assembly

0x0003 41 14 PUSH.B 20

0x0005 50 03 79 01 NOT.B pio[1]

0x0009 00 00 80 WAIT 128

0x000c 67 DEC.B (stack)

0x000f 26 f8 BNE - 8

http://www.brain4home.eu/

Automation Engine - AE Language reserved words

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 11

Automation Engine - AE

 Language reserved words

 Directives

 #define

the #define directive is used to define integer constants. Using defines allow better readability of code.
The defines are generally used in the headers.
Example:
#define _9600_BAUDS 130

#define _N81_PARITY 1

...

 scic=_N81_PARITY 'configure serial port (instead of PIO)

 bauddiv=_9600_BAUDS 'set serial speed

This is the equivalent as:
scic =1

bauddiv=130

 #eeprom

This directive appear once in a program. It define the starting page and the enerated code
#eeprom 0, 0 'This generate code for page.0 (start_page=0, end_page=0)

 #extern

#extern allow to declare SUB that are not implemented in the program but present in the flash memory of the
device in another page
#extern SUB testprint(st AS *BYTE) @$100

 #include

The #include directive is useful for re-using standard definition and subs. This reduce the size of the source
program helping to keep maximum readability.
#include "bae0911.inc" 't he include directive may also contain a path

 Comments // and single quote '

Comments in the code are prefixed with a quote ‘ or a double slash //
They can appear at starting of the line or after the statement
' This AEBASIC example display "Hello World!" on lcd and on serial interface 9600N81

' then keep looping on reading characters from serial and echo back to serial and lcd

' it terminate when a character 'Q' or 'q' is received

' Sep 2012 Pascal Baerten

http://www.brain4home.eu/

Automation Engine - AE Language reserved words

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 12

 Structure of an AE program

 AE BASIC reserved words

AS

BREAK

BYTE

CONST

CONTINUE

DO

DWORD

ELSE

END

EOF

FOR

GLOBAL

GOTO

IF

INT

LOCAL

LONG

NEXT

NOP

NOT

OR

POP

REGISTER

RESUME

SHORT

SIZEOF

START

SUB

SUSPEND

THEN

TO

WAIT

WFLASH

WHILE

WORD

WRCMD

FALSE

TRUE

 Assember opcodes

AND

ADD

AIS

AND

BCC

BCS

BEQ

BERR

BGE

BGT

BHCC

BHCS

BIT

BLE

BLO

BLS

BNE

BNERR

BNZ

BPL

BRA

CALL

CLR

CLRC

CMP

DEC

DIV

GROW

GROWS

INC

IJMP

JMP

MOV

MUL

PUSH

PUSHLA

RET

SETC

SHL

SHR

SHRINK

SHRINKS

SJMP

SUB

XOR

http://www.brain4home.eu/

Automation Engine - AE Language reserved words

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 13

 Instruction set and related flags

tw
o co

m
ple

m
ent o

ve
rfl

ow

fla
sh

 w
rit

e p
ro

te
ct

hal
f c

arry
 /

flo
w

 e
rro

r

in
te

rr
upt m

ask

nega
tiv

e

ze
ro

ca
rry

ru
nnin

g s
ta

te

w
aiti

ng s
ta

te

00 width independent instruction

xx width of instruction:

 01 8bit

 10 16bit

 11 32bit

width type opcode mnemonic V F H I N Z C R W param description

00 siop 0x00 WAIT imm16 wait for imm16 x 1/256th seconds

00 siop 0x01 CALL addr16 push current Program Counter and branch to location

00 siop 0x02 JMP addr16 unconditional branch to location

00 0x0300 0x0400 0x0500 0x0600 0x0700 0x0800 0x0900 0x0A00 0x0B00 0x0C00 0x0D00 0x0E00 0x0F00 siop 0x10 RET - return to caller: pop lp (pointer to locals) and pop pc

00 siop 0x11 NOP - no operation; if this instruction is the first at $0000, autostart is active

00 siop 0x12 CLRC 0 -

00 siop 0x13 SETC 1 -

00 siop 0x14 END 0 -

00 siop 0x15 GROW - adjust value in stack to one byte wider (push 0)

00 siop 0x16 GROWS - adjust signed value in stack to one byte wider: push 0 or push $ff

00 siop 0x17 SHRINK - adjust value in stack to one byte smaller (AIS 1)

00 siop 0x18 SHRINKS - adjust signed value in stack to one byte smaller: AIS 1 and value |= $80

00 siop 0x19 SJMP JMP to WORD address retrieved from stack

00 siop 0x1A IJMP indexed JMP; address table must folow the instruction; index is retreived from stack

00 0x1B00 0x1C00 0x1D00 0x1E00 0x1F00 siop 0x20 BRA rel8 unconditional branch to relative location

00 siop 0x21 BRN rel8 branch never

00 siop 0x22 BHI x x rel8 branch if higher (C|Z =0)

00 siop 0x23 BLS x x rel8 branch if lower or same (C|Z =1)

00 siop 0x24 BCC x rel8 branch if carry clear(BCC) / branch if higher or same(BHS) (C=0)

00 siop 0x25 BCS x rel8 branch if carry set(BCS) / branch if lower(BLO) (C=1)

00 siop 0x26 BNE x rel8 branch if not equal (Z=0)

00 siop 0x27 BEQ x rel8 branch if equal (Z=1)

00 siop 0x28 BHCC x rel8 branch if HALF carry clear (H=0) (half carry is also err flag for ECMD & seq)

00 siop 0x29 BHCS x rel8 branch if HALF carry set (H=1) (half carry is also err flag for ECMD & seq)

00 siop 0x2A BPL x rel8 branch if plus (N=0)

00 siop 0x2B BMI x rel8 branch if minus (N=1)

00 siop 0x2C BGE x x rel8 branch if greater or equal (N=0) ?V

00 siop 0x2D BLT x x rel8 branch if less than Z^V

00 siop 0x2E BGT x x x rel8 branch if greater (N=0 & Z=0) ?V

00 siop 0x2F BLE x x x rel8 branch if less or equal N | (Z^V)

00 siop 0x30 PUSHLA var push the resolved address of Local variable to the stack

00 siop 0x31 AIS imm8 signed value, positive free space on stack, negative allocate space on stack

00 siop 0x32 SUSPEND 0 imm8 suspend execution of the process imm8

00 siop 0x33 RESUME 1 imm8 resume the execution of the process imm8

00 siop 0x34 START 1 imm8,imm16 start process number imm8 at location imm16 (or label)

If the process already running it is aborted and context is reinitialised (stack and flag

cleared) and program counter assigned to the new location

00 siop 0x35 WRCMD ↕ nr,len,ref,ref WRITE-READ command (used for complex I/O, init and terminate a SEQ command

 (wrcmd nr, len: len of param and addr mode of ref)

(set ERR on error)

00 siop 0x36

00 siop 0x37 WFLASH ↕ imm set / clear write flash flag: 0 disable write to flash (default), 1 enable

00 0x3800 0x3900 0x3A00 0x3B00 0x3C00 0x3D00 0x3E00 0x3F11 0x0011 arop1 0x01 CLR 0 0 1 var Clear content of variable

11 arop1 0x02 NEG ↕ ↕ ↕ ↕ Two’s Complement (value=-value)

11 arop1 0x03 NOT 0 ↕ ↕ 1 One’s Complement

11 arop1 0x04 SHR ↕ ↕ ↕ ↕ Shift right

11 arop1 0x05 SHL ↕ ↕ ↕ ↕ Shift left

11 arop1 0x06 INC ↕ ↕ ↕ ↕ ↕ increment

11 arop1 0x07 DEC ↕ ↕ ↕ ↕ ↕ decrement

11 arop1 0x08 TST 0 ↕ ↕ Test value for negative or zero

11 0x0911 0x0A11 0x0B11 0x0C11 0x0D11 0x0E11 0x0F11 arop2 0x10 ADD ↕ ↕ ↕ ↕ ↕ Addtion

11 arop2 0x11 SUB ↕ ↕ ↕ ↕ ↕ substraction

11 arop2 0x12 CMP ↕ ↕ ↕ ↕ ↕ compare

11 arop2 0x13 MOV 0 ↕ ↕ assign

11 arop2 0x14 AND 0 ↕ ↕ logical AND

11 arop2 0x15 BIT 0 ↕ ↕ same as AND but does not modify destination

11 arop2 0x16 OR 0 ↕ ↕ logical OR

11 arop2 0x17 XOR 0 ↕ ↕ logical exclusive OR

11 arop2 0x18 DIV ↕ ↕ Division

attention: DIV push the remainder (byte) on the stack even for direct memory mode

11 arop2 0x19 MUL 0 0 Multiply

11 0x1A11 0x1B11 0x1C11 0x1D11 0x1E11 0x1F11 pushpop 0x00 PUSH ↕ ↕ push value/variable in stack

11 pushpop 0x08 POP ↕ ↕ pop from stack to variable

http://www.brain4home.eu/

Automation Engine - AE How AE instructions are internally stored

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 14

 How AE instructions are internally stored

While ae_asm compiler does the hard work automatically, it may be useful to have some insight on how assembly instructions are represented internally as bytecode:

Internal Instruction format for AE opcodes

1
sarop

ofd ofs 0 x x x

ofd 0 1 x x x

0 ofs 0

0 0 1
pop ofd 0 0

width simple operation prefix or width of arithmetic opreation Memory address map

simple op 00 #define ae_BIT_MAPPED 0x79

byte 01 #define ae_BYTE_MAPPED 0x7A

word 10 #define ae_FLOW_MEM 0x7B

long 11 #define ae_GLOBAL_MEM 0x7C

ofd,ofs,im addressing mode #define ae_ #define ae_HEAP_MEM 0x7D

1 --1 IMMEDIATE source operand is 1=IMMEDIATE, 0=MEMORY #define ae_IMMEDIATE 1 #define ae_HREG_MEM 0x7E

2 -1- OFFSET_SRC offset on source memory location (offset is a byte from stack) #define ae_OFFSET_SRC 2 #define ae_LREG_MEM 0x7F

4 1-- OFFSET_DEST offset on destination memory location (offset is a byte from stack) #define ae_OFFSET_DEST 4

type

8 0b00001000 POP_BIT #define ae_POP_BIT 8

16 0b00010000 MAROP_BIT #define ae_MAROP_BIT 16

32 0b00100000 SAROP_BIT #define ae_SAROP_BIT 32

sarop/marop stack and memory arithmetic operator 5 bit operator (up to 16 arop1 + 16 arop2 operations)

 arop1 arithmetic operator on one operand first bit of the five bit operator is 0

 arop2 arithmetic operator on two operands first bit of the five bit operator is 1 #define ae_TWO_OPERANDS 0x10

siop simple operation 6 bit operator (up to 64 instructions)

pushpop push / pop stack operations #define ae_PUSHPOP_MASK 0b00111000

reference to rdata

reference to source address (2bytes)

reference to destination (2 bytes) immediate 1 to 4 bytes

reference to destination (2 bytes)

w
id

th

sarop

0
stack

psh

0 0 WRCMD

reference to source address (2bytes)

PC + 6 PC + 7

optional operand

PC + 3 PC + 4 PC + 5

optional operand optional operand

OP8

nr wlen reference to wdata rlen

PC + 0 PC + 1 PC + 2

reference to destination address (2bytes)

 immediate 1 to 4 bytes

0

marop

&

stack

1
marop

0

0 0 simple operation

OPCODE

marop

marop

http://www.brain4home.eu/

Automation Engine - AE AE stack

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 15

 AE stack

There is a distinct stack for each four processes. The stack is 96 byte deep and is used for:

¶ CALL/RET branching,

¶ parameter passing

¶ local variable allocation

¶ arithmetic operations

r et ur n l ow

r et ur n hi

saved l p

sp

l p

cal l er

cont ext

f unct i on

par ams

st ack

saved l p

l ocal s

stack begin (0x4f)

stack end (0x00)

f r ee st ack

space

At startup, AE initialise stack pointer (sp) to 0x50 == 96

Here the opcodes that directly control the stack

PUSH variable
Ą decrement sp and copy the variable in the stack

POP variable
Ą copy current stack element to the variable and increment sp

AIS Signed_value
Ą positive free space on stack, negative allocate space on stack

PUSHLA variable
Ą push the adress of the variable in the stack, this is needed whe using
local variables because compilaer does not know the adress at compile
time.

 Subroutine

Each CALL consumes 2 bytes to store return address that are POPed on RETurn. Before leaving a subroutine,
ensure that SP (stack pointer) is pointing to the same position as at the entry. See below for subroutine
branching.

 Parameter passing

If the caller needs to pass a parameter to the subroutine, the caller push the value in the stack before CALL
operation. The called subroutine access the parameter(s) via opr8a negative offset.
After return, local pointer is restored automatically.

 Local variables

Allocating local variable is a simple matter of pushing content in the stack. To access this content, use the
negative offset in the opr8a operand. Local variables are preferred to global user registers to avoid inconsistency
between distinct processes/functions. This also allows multi level sub imbrication and reentrance.
When leaving the subroutine with RET, stack and local pointers are automatically restored to the caller context

 Arithmetic operations

http://www.brain4home.eu/

Automation Engine - AE AE addressing

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 16

Stack is also used for arithmetic operations. This is a very efficient way to solve even complex calculations in the
reverse Polish notation. I.e. the operands are pushed in the stack and the operator is then applied on implicit
data: USERA= 5 + (1 + 2) can be written down like this:
 PUSH.B 5 // push byte operands

 PUSH.B 1

 PUSH.B 2

 ADD.B // add 1+2 : pop 2, pop 1, add them and push 3 on the stack

 ADD.B // add 5+3 = pop 3, pop 5, add them and push 8 on the stack

 POP.B @B_USERA // pop the result ant store it on USERA register

 AE addressing

The registers are addressed via opr8a operands. The format of the operand is an 8bit value preceded by a ‘@’

symbol to help compiler to distinguish between addresses and immediate values.
As the register memory space is 0 to 127, only the seven lsb bits are significant.
The msb has a special meaning: when set, it is a negative value that represents a relative stack address.

 AE branching

Within a process, AE programs are executed sequentially. The PC (program counter) points to the instruction to
be executed, when the instruction at PC is finished, PC is incremented to the next instruction that has to be
executed at his turn then PC is incremented again. AE continues this sequence until an END instruction is reached.
The branching instructions allow altering this normal sequence by modifying PC to branch to other part of the
code.

 Absolute static branching: JMP

The parameter given to the branch instruction is the new value to set in the program counter (PC). Doing so
instruct AE to continue execution at the new location provided. The parameter needed by the branch instruction
is a word value capable to refer to any absolute position within the code. To avoid the hassle to calculate this new
PC value, the compiler resolve this word value based on a simple label defined in the program.

JMP label // this allows to jump to any location of AE code with no restriction on the distance

...

label:

...

An absolute branching require three bytes of code memory (1 byte for instruction+ 2 bytes for address).

 Absolute stack branching: SJMP

This single byte instruction retrieve the absolute branch location from stack. The jump location (WORD) has to be
pushed in stack before using SJMP. Such instruction allow to generate calculated jump location or using complex
pointer passing argument to jump to.

http://www.brain4home.eu/

Automation Engine - AE AE branching

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 17

 Absolute indexed branching: IJMP

This instruction retrieve the jump table index from stack. The index is a byte value used to retrieve the jump
address in the table following immediately the IJMP instruction.
This is a useful instruction to generate “case of” construction:

LOCAL choice AS BYTE

loop:

choice= serial_read_byte

CMP.B choice ,6 'ensure index being used for IJMP in within jumptable size

BPL loop

PUSH.B choice 'index has to be a BYTE value pushed in stack

 IJMP 'the instruction remove the index from stack find the address to jump to

jumptable: 'the jumptable has to follow immediately the IJMP instru ction

 DEF.W case0,case1,case2,case3,case4,case5,case6 ' refer to local labels but can also accept subs

case0:

 'do something

 BRA endcase

case1:

 'do something

 BRA endcase

case2:

 'do something

 BRA endcase

case3:

 'do something

 BRA endcase

case4:

 'd o something

 BRA endcase

case5:

 'do something

 BRA endcase

case6:

 'do something

 BRA endcase

endcase:

 Relative branching: BRA, BEQ, BGR, BLO, …

Instruction for relative branching allows conditionally skipping small portion of code or looping to near location.
They are called relative because the program counter is incremented by the signed value provided as parameter
of the branching instruction. The parameter is coded on a single signed byte. The displacement range is -128 to
127 allow branching both forward and backward relative to current location. To avoid the hassle to calculate this
displacement value, the compiler calculates this based a simple label defined in the program.
See instruction list table for details on branching conditions.
If the label is unreachable due to distance between branch instruction and the label, the compiler stops with the
following error:

BRANCH outside relative range - 128..127! on line 128 : labelname

To solve such issue use the JMP instruction where BRA is not possible.
For conditionals branch’s, as no conditional JMP exists, use an opposite test that skips an unconditional JMP.
The AE compiler detect when branch is out of reach and generate such logic to resolve the issue.
A relative branching instruction require only two bytes of code memory (1 byte for instruction+ 1 byte for
displacement).

 Branching to subroutine CALL, RET

When designing sequential programs, some portions of code need to be repeated to execute the same action at
different places in your program. Such code portions could be coded as a subroutine.
A subroutine is a normal code that terminate by a RET instruction meaning RETurn to caller. The sub routine is
placed outside the main execution loop and is called when need from any place within your program logic.
The CALL instruction is used to branch to a subroutine by providing the label of this subroutine. It is similar to a
JMP instruction but also push in the stack the position of the instruction (PC is a word = two byte) that follows the
CALL to allow RETurning to the original sequence when the subroutine has terminated his work.

http://www.brain4home.eu/

Automation Engine - AE Controlling the processes

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 18

To avoid overflowing/underflowing the stack, is important that the CALL - RET flow instructions are correctly
disposed (for each CALL instruction executed a corresponding RET instruction is required). It is however possible
to have a subroutine that CALL another subroutine up the stack depth (96bytes/3 = maximum 32 level) as long as
long as each subroutine terminate with their own RET.
See below for CALL example.

A CALL instruction consume three bytes of code memory (1 byte for instruction+ 2 bytes for subroutine address)
and 3 byte in stack (2 bytes for the returning address and one byte for preserving the local pointer value.
A RET instruction consume only one byte of code memory (1 byte for instruction) as the returning address is
retrieved from stack at runtime.

 Controlling the processes

AE Programs stored in the chip are easily controlled by the master: pc0 to pc3 represents the program counter of
the corresponding process. Writing 0 to this register stops the process. Writing a value (re)start the process at the
location instructed.

REGISTER DESCRIPTION

PC0 Program Counter of process 0

 Autoexec of the process 0 on power on

One special feature is to have the device to start automatically the process zero on power on. This is achieved
putting a NOP on location zero (i.e. at the very first byte of the page.0)
This feature is useful to have the device initialized with some user settings at startup, but also to have an
autonomous behavior initiated without requiring master attention.

 Writing code for BAE devices

 Building ae-asm commandline assembler

The BAE0910 is capable of executing AE compiled code saved in embedded eeprom. You can find in the
brain4home.eu download area the ae-asm.tgz archive containing source code to build on a Linux platform. The
archive contains a README file with needed instructions.

 Defining eeprom page to use in source code

A compilation directive #eeprom start,end instruct compiler to generate code from start page to end page

 Defining location of the code in the page(s)

A compilation directive #org position instruct compiler to generate code following this directive at the location
specified

http://www.brain4home.eu/

Automation Engine - AE Writing code for BAE devices

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 19

 Register definitions in source code

AE programs rely heavily on device registers. To avoid hard coding of register addresses within source code, an
include file is provided with definition of BAE0910 registers. This is realized by including the registers definition
file.
Registers names are prefixed with their type (B_ for byte, W_ for word, L_ for long) which remember you to use
the adequate mnemonic suffix.
Example:
#include ñ/opt/ae_asm/include/bae0910.incò //include register definition

#eeprom 0,1 // start page, end page

 // 0,1 will generate a binary file of 2x512 byte from page.0 to page.1

#org $0 // start code at location 0x00

 NOP

 CALL sub

 END

#org $100 // put the subroutine at location 0x100

sub: CLR.L L_RTC // to clear RTC time counter

 RET

Tobe continued…

http://www.brain4home.eu/

Automation Engine - AE Sample AE programs

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 20

 Sample AE programs

The following listing was used to measure performance:

// heavy .asm

// load loop measurement program for BAE0910

// Dec. 2009 Pascal Baerten

#include "bae0910.inc" // register definition file

#eeprom 0, 0 // start_page, end_page

#org $00 // code start at location 00

main:

 NOP

four : //entry point for 4 process measurement

 START 1,process

three: //entry point for 3 process measurement

 START 2,process

two: //entry point for 2 process measurement

 START 3,process

one: //entry point for 1 process measurement

 CLR.L L_USERO

 SET.L L_USERN,100000

 SET.L L_USERM,L_RTC //save current time in USERM

bcl:

 DEC.L L_USERN

 BNE bcl

 PUSH.L L_RTC // put end time in stack

 PUSH.L L_USERM // put start time in stack

 SUB.L // diff end - start (seconds elapsed)

 POP.L L_USERM // store diff in USERM

 SUSPEND 1 //

 SUSPEND 2 // stop other processes

 SUSPEND 3 //

 END // all done.

process:

 INC.L L_USERO

 BRA process

 END

$ ae_asm heavy.asm - o heavy.bin

processing file heavy.asm - pass 1,

processing file heavy.as m - pass 2,

Code start at :0x0000

Code end at :0x002f

Size reserved :0x0200

Symbol Table :

 main LABEL 0x0000

 four LABEL 0x0001

 process LABEL 0x002a

 three LABEL 0x0005

 two LABEL 0x0 009

 one LABEL 0x000d

 bcl LABEL 0x0018

ouptut to heavy.bin

$ echo 1 > /tmp/ow/FC.000000000003/eeprom/erase.0

$ cp /tmp/heavy.bin /tmp/ow/FC.000000000003/eeprom/page.0

$ echo 12 > /tmp/ow/FC.000000000003/910/pc0

$ cat /tmp/ow/ FC.000000000003/910/userm

 18

$ echo 9 > /tmp/ow/FC.000000000003/910/pc0

$ cat /tmp/ow/FC.000000000003/910/userm

 26

$ echo 5 > /tmp/ow/FC.000000000003/910/pc0

$ cat /tmp/ow/FC.000000000003/910/userm

 34

$ echo 1 > /tmp/ow/FC.000 000000003/910/pc0

$ cat /tmp/ow/FC.000000000003/910/userm

 42

Start process0
at label “one”

Start process0
at label “two”

Start process0
at label “four”

Start process0
at label “three”

Erase eeprom &
store program

“one”

Generate the
binary file

http://www.brain4home.eu/

Schematics & examples Controlling servo motors

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 21

 Schematics & examples

This example proposes to use the chip with following functions:

¶ COUNTER gets pulsed signal from an HALL effect sensor and count rotations of a magnet.

¶ PWM1 output a tone alarm

¶ ADC gets consign information from a potentiometer

¶ PIO gets input from a tactile switch

¶ OUT drive a LED with on/off or in dimmer mode with PWM3 configuration.

 Controlling servo motors

A particular application of PWM is the control of servo motors used in robotics and RC models.

A servo motor requires a 5Vdc supply and a control signal in the form of a repeated pulse every 20ms (50Hz). The
width of the pulse defines the shaft position. Such signal is easily produced by PWM function.

This behavior can easily be implemented with PWM, no specific power drivers are needed allowing you to
connect the servos directly to the TTL pins of BAE0910.
Example for a servo connected on PWM1:
Set TPM1c=4 Ą prescaler PS2:PS1:PS0 to 1:0:0 (1µs resolution) , Clear POL bit,
Set PERIOD1=20000 Ą period of 20000µs = 50Hz,
Set DUTY1 a value in the range of 1000 to 2000 to control precise servo position (1000 steps).

http://www.brain4home.eu/

Recovering a failing chip Question & Answer

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 22

 Recovering a failing chip

The BAE chips are microcontroller based. They are factory programmed to present specific 1-wire functionalities.
The embedded software is composed of a bootstrap and a firmware. The bootstrap part is static and cannot be
altered without special hardware. This part contains 1-wire communication stack and the firmware update code.
The second part, the firmware, is upgradable and contains the functionalities advertised by the device.
There are some situations that could alter the device behavior.

 Question & Answer

Q. Firmware upgrades failure.

The device functionality is assured by the upgradable part of the firmware a failure during upgrade process
will alter normal behavior of the chip.

A. In case of failure during upgrade, the chip automatically restarts in firmware update mode waiting for a new
firmware to be re-installed, just restart the firmware procedure to restore full functionalities

Q. Firmware bug.

Even if we carefully test released firmwares, the risk to encounter a software bug in cannot be totally
excluded. Also, less stable beta versions will be proposed to testers.

A. If such a problem is suspected, re-install a known stable firmware version (downgrade is always possible).
If the device even refuses to respond to firmware commands, see below to force firmware update mode.

Q. Device is not responding to firmware command.
A. The device could be forced to firmware update mode with the following manipulation: maintain the DQ pin

low, then power up the chip, then releases DQ. This will force the device to start in firmware upgrade mode.
You dispose of 40 seconds to start a new firmware upload.

Q. Out of range settings.

The settings related to frequencies are the more subject to put CPU under heavy stress, particularly software
PWM and ADC sampling frequency. Limit checks would normally prevent to put the device in an
unresponsive state. But using multiple resources at the limits in unfavorable situations like weak network
reliability could put the chip on the knees.

A. Power cycling the device will solve the situation. This could become a concern if the offending settings are
automatically set via autoexec feature from user EEPROM. For such situations, a special reset firmware file is
available in the download section. Install this firmware with recovery procedure. This reset firmware erases
all user data and firmware stored in the chip. Once erased, re-flash the virgin chip with a valid firmware.

Q. Out of frequency external signal.

BAE0910 device has a COUNTER input pin that trigger software action in edge (level transition) of the
external signal connected to the corresponding pin. A frequency out of range could consume every available
CPU cycle. Such situation could prevent to communicate normally with the chip.

A. Remove the offending signal to revert to a stable situation.

http://www.brain4home.eu/

Support Question & Answer

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 23

Q. Inactive mode.

If the chip is powered on with the OUT pin forced low, the device will be put in inactive mode with all pins in
high impedance mode. In that mode, the is totally disabled. If OUT pin is used, ensure that the signal is either
in high impedance or pulled high at power on.

A. Disconnect the circuit that force the OUT pin low and cycle power on the device.

Q. Out of range electrical signal.
A. Such situation should be avoided with adequate isolation circuit and protection components. Exceeding

maximum electrical characteristics could cause permanent damage to the device.

Q. Breaking the secured flash code.

It is not possible to access the internal code even with adequate microcontroller programming tools.
A. Attempting this will definitively erase the firmware and void the device.

 Support

Online support is available via the forum on www.brain4home.eu and via the discussion list.
To subscribe, list-subscribe@brain4home.eu

 Availability

Chips and boards can be ordered online on www.brain4home.eu

 Condition of use

The BAE chips are intended for hobbyist usage and are not approved for use where it constitute or may constitute
a danger to human life or health.

 Terms of license

The software embedded in the chips is protected by copyright laws. Customer is not allowed to reverse engineer,
decompile, or disassemble the embedded software.

http://www.brain4home.eu/
../../../AppData/Roaming/Microsoft/Word/www.brain4home.eu
mailto:list-subscribe@brain4home.eu
http://www.brain4home.eu/

About the author Credits

www.brain4home.eu BAE0910 Multi-function 1-wire slave device page 24

 About the author

Pascal Baerten is primarily an IT consultant with technical background in automation. He followed A2 technical
studies until 1985 where he played with CNC machines and pneumatic automates. Graduated in Computer
Sciences from the Robert Shuman High school in Belgium in 1989, his thesis was titled “A terminal emulator”
where he mastered serial communication and networking programming.
His first computer was a Sinclair ZX81, where he learned the basics of exploiting very constrained computing
resources in assembler. Later, a Commodore 64 opened the way to interfacing computers with electronic toys.
Since 1990 he developed network based resource sharing solutions in assembler and C.: Telex server, Minitel
server, mainframe front end, mail server, print server, text2speech telephone server, database gateway, IM
server …
As skilled networking/server architect, he is working as IT consultant for large financial companies since 1997.
In parallel, developments in home automation have contributed to accumulate some experience with
microcontrollers and embedded computing.

 Credits

Special thanks to Paul Alfille for integrating support of this device in OWFS project and for the constant feedback
he provided during development of the device.

 Revision history

Revision # Date Description

0.1 Sep 9, 2011 Initial draft

0.15 Oct , 2012 Adding more detail on memory addressing and AE basic
instructions

0.2 Sep 12, 2013 Updated recent changes in instructions and attached
figures.

http://www.brain4home.eu/

